Enhanced cortico-amygdala efficacy and suppressed fear in absence of Rap1.

نویسندگان

  • Bing-Xing Pan
  • Francois Vautier
  • Wataru Ito
  • Vadim Y Bolshakov
  • Alexei Morozov
چکیده

Auditory fear conditioning, a model for fear learning, is thought to be mediated by synaptic changes in the cortical and thalamic inputs to the lateral amygdala (LA); however, the specific roles of both pathways are still debated. Here, we report that a CaMKII-alpha-Cre-mediated knock-out (KO) of the rap1a and rap1b genes impaired synaptic plasticity and increased basal synaptic transmission in the cortical but not thalamic input to the LA via presynaptic changes: increases in glutamate release probability and the number of glutamate quanta released by a single action potential. Moreover, KO mice with alterations in the cortico-LA pathway had impaired fear learning, which could be rescued by training with a more aversive unconditional stimulus. These results suggest that Rap1-mediated suppression of synaptic transmission enables plasticity in the cortico-amygdala pathway, which is required for fear learning with a moderately aversive unconditional stimulus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rap1 signaling prevents L-type calcium channel-dependent neurotransmitter release.

The small GTPase Rap1 contributes to fear learning and cortico-amygdala plasticity by inhibiting glutamate release from cortical neurons, but mechanisms of this inhibition remain unknown. Conversely, L-type calcium channels (LTCCs) become involved in glutamate release after fear learning and LTP induction. Here, we show that Rap1 deletion in mouse primary cortical neurons increases synaptic ves...

متن کامل

Fear learning induces persistent facilitation of amygdala synaptic transmission.

In the maintenance phase of fear memory, synaptic transmission is potentiated and the stimulus requirements and signalling mechanisms are altered for long-term potentiation (LTP) in the cortico-lateral amygdala (LA) pathway. These findings link amygdala synaptic plasticity to the coding of fear memories. Behavioural experiments suggest that the amygdala serves to store long-term fear memories. ...

متن کامل

Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning.

The goal of the present study was to examine the contribution of thalamo-amygdala and thalamo-cortico-amygdala projections to fear conditioning. Lesions were used to destroy either the thalamo-cortico-amygdala projection, the thalamo-amygdala projection, or both projections, and the effects of such lesions on the acquisition of conditioned fear responses (changes in arterial pressure and freezi...

متن کامل

ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory

Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASI...

متن کامل

Anxiolytic-like effect of pregabalin on unconditioned fear in the rat: An autoradiographic brain perfusion mapping and functional connectivity study

Clinical and preclinical evidence suggests anxiolytic-like efficacy of pregabalin (PGB, Lyrica). However, its mechanism of action remains under investigation. The current study applied [(14)C]-iodoantipyrine cerebral blood flow (CBF) mapping to examine the effect of PGB on neural substrates underlying unconditioned fear in a rat model of footshock-induced fear. Regional CBF (rCBF) was analyzed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2008